ON BETTONGIA CUNICULUS OGILBY, 1838 (MARSUPIALLA)

by H. H. Finifison

[Read 9 October 1958]

Abstract

SUMMARY An analysis of the characters of a small series of bettongia cunieulus Ogilby from Tasmania is made for comparison with mainland forms of 7 . penicillatu Gray and B. lesueur Quoy ant Caimard.

This species was formerly regarded as exclusively Tasmanian in oceurrence, and its supposed insularity has tended to minimise somewhat the importance in practical taxonomy of several areas of vagueness and conflict in its description. Since Brazenor (1950) confirmed the Victorian status of the species, as originally clamed by Hall and Kershaw (1917), the necessity for clarifying its distinctions from the well ascertained mainland species has sharpened. A small series of four skins and cleven skulls personally collected in the district of the upper Macquarie River in eastem Tasmania, while inadequate for complete re-description, has prompted the examination summarized below, which may reduce these uncertainties. The comparisons instituted are chietly with B. penicillata ogilbyi of South and Western Australia, and B. lesueuri of South and Central Australia; B. gamardi and the eastern form of B. penicillakt, which may be closer to B, ctuniculus, have not been available locally.

EXTERNAL CHARACTERS

Rhinarium very eqarsely granular, much more so than in B. penicillata and B. lesteuri, but its upper margin with a backward and npward directed spur, as in the former.

Facial vibrissae weak in comparison with body size, the mysticials reaching 37 mm . as a maximum; the lower rows are white, the upper brown and none black. The supra orbitals may be longer than the mysticials (max, 42 min .) and are pale brown, as are the genals also with length ranging from $29-36 \mathrm{~mm}$. Black eyelashes are present on both upper and lower eyelids, but are weakly developed. On the lower border of the orbit a crescent of stout black bristies is cleveloped, the longest 17 mm ., and there is a similar but weaker series on the upper border; the development of these bristles is very strong in Aepyprymnus and falls off in the order B. cunicults, B. penicillata, B. lesucuri. Submentals and interramals were not checked in the fresh material and are incomplete in the skins; the interramals present are two in number, silvery white and from 12-17 mm. long, springing from a common median site about 20 mm . pusterior to the mid point of the lower lip.

The manus is much stouter than in B. pernicillata; the digital formula is $3>4>$ or $=2>5>$ or $=1$; the 2nd digit is shorter relative to the 3rd than in that species and the 4 th is much stouter than the 2nd, and its claw is both stouter and longer, no that its general size superiority over the and is more decided than is indicated by the formula. The clavs are straighter and wider at the base and taper more to the point in a superior view than in B. penicillata in which they are nearly parallel sided, when seen from above; 3rd claw (maximum) 15.5 mm. ; th claw 13.5 mm .

Trans. Roy. Soc. S. Aust. (1959), Vol. 82.

Pes stout with short blunt digits and mails; the plantar surface is completely naked as in Aepthmymnus, therein differing from B. Lesueuri and B, penicillada in which it is more or less completely haired in the young animal; in colour of integument it is dusky though less so than in B. penicillata; granules 14 per cm . under the midmetatarsus, as in B. lesueuri, coarser than in B. penicillata; nails white.

The tail is stout and in the single example measured has the length about 106 per cent. of that of head and body, as in the Central Australian B. lesueuri, and relatively longer than in Aepyprymus and B.p. ogilbyi.

DIMENSIONS

The following figures give the dimensions in mm. of an adult male ($\mathrm{P}^{4} \mathrm{M}^{4}$) measured in the Hesh, head and body, 325; tail, 345 ; chest givth, 180 ; manas length, 28; nail of 3rd digit, 16; pes, 121; 4th toc, 57 ; nail of 4th toe, 11.4, ear. 43×23; rhinarium to eye, 46 ; eye to ear, 28 ; eve (intereanthal), 15 ; weight, 1590 g.

PELAGE

The texture of the coat is intermediate-crisper than in B. lesueuri, muctr sufter than in adults of B.p. ogilbyi; it is longer than in either but not denser as to underfur. There is a strong overlay of guard hatirs over all the dorstm, except on the nape, where the fur is longer and looser and ruft-like. General colour a pale, strongly grizzled brownish grey, with the head and tail somewhat darker, and the limbs decidedly lighter than the body. In two examples a well-matrked pale hip stripe is present, contrary to Thomas's statement.

The composition of the pelage is similar to that of B. lesueuri and B.p. ogilbyi, but somewhat more complex. Mid-dorsally the main pile of undertur is from $20-23 \mathrm{~mm}$. Iong; the basal three-quarters of which is Ridgway's blackish plumbeous, a subterminal band of $3-4 \mathrm{~mm}$. wood brown and the points clove brown, not black. Guard hairs vary in length from $27-30 \mathrm{~mm}$. and show somer variation in the number of colour bands and their length. The more numerous and stouter have the normal form bands as in the atove named species, i.c. ${ }^{0} 0$ mm. plumbeous, 4 mm . sepit, 4 mm . ivory shading to buff and sepia, and 5 mm . sepia. The minority are more slender and the ivory band is split into two by interpusition of a very narrow, dark sepia band. There is also a sparse representation of a 3rd category of very stout, all dark guards, reaching 36 mm , and medium sepia. The resulting extermal colonr dorsally is a pale, strongly grizaled drab - the pallor due largely to the blend of ivory and ash buff, which is not much darkened by the overlay of weak septit points. The colour is warmet on nape and crown and slightly paler on rump. Ventrum, basally decp plumbeous, externally greyish white washed lightly with yellow bulf. There are two pilesthe underfur of 23 mm . ca. in which the basal half is plumbeous and the rest creamy white and the sparse guard hairs of 30 mm . in which the basal zths is plumbeous, median $\%$ sth sepia and terminal 鲤ths creamy white. The sides are slightly paler than the dorsum, the subterminal colour being reduced to tilleul buff as on the rump. The head is slightly darker than the mid back with a small variahle area on the muzzle bistre. The eai backs are well furred at pale tawny olive, lighter than the head, but variably darkened on the margins; inner surfaces a pale buff; antitragoid tuft not conspicuous. Fore and hind limbs like the sides externally, but less grizzled; intemally, like the ventrum. Manus and pes much paler tham in the forms of B. lesueuri and in B.p. ogibyi; a uniform greyish white, very faintly tinged with buff, Tail with the dorsal hairing proximally
more erect than in the species named; colour distribution much as in the latter but with the proximal russet areas dulled to buffy drab, gradually darkening to bluckish brown over the crest which may occupy \& of the length of the tall and reseh 25 mm. ; in two specimens the termisal 12 mm . is pure white; the crest is Jess defined than B.p. ogilbyi and its darkest parts are still grizzled with white: the lateral surface is buff fading to buffy white on the ventral surface.

Three of the skins examined were taken in mid-winter and the other in midsummer, but though they show slight differences in general warmth of colour, degree of grizaling and density, these are not olviously related to a seasonal or sexual factor.

In comparison with B. lesuetori and B.p. ogilbyt the preage of B. cuhtulus is gencrally conspicuous for pallor; its lighter examples are decidely paler, colder in tome and more conspicuously griecled than either of these- Its darker variants approach them in colour, but have the further distinction of a much longer pelage, a ruff on the nape and near white hands and fect. The diagnostic value of the hip stripe is doubtful.

CRANIAL CHARACTERS

In the 11 skulls examined, 10 are fully adule the the $\mathrm{p}^{+} \mathrm{M}^{+}$dental phase and oue is subadult and at the toenth change. The series is moro uniform both metrically and non-metrically than any other Bettonatia group revently exammed (1958), the metm variation in 20 linear dincosions being 9 per cent.

The skull is the targest of the geous, the range of its chief dimensions overlapping the maxima tor B.p.osilbyi and B lesueuri or showing a plus clearance; with an average deviation of the mem values af -7 per went. from those of the former. The mean displacement volume is 66 ce as against 64 ce . for B.p. ogilbyi and a range of $53-64 \mathrm{cc}$. in three populations ut B. lesumari recently studicd. The ussification is light - the mean adult weight of the prepared skill befng 16 g . as in the smaller penicillata; its surfaces smooth and with museular ridging even more reduced.

In gencral outline (P]. 1, Fig. A-E) the skult is close to B,p. ogilbyi with which comparison is chiefly made hercunder. The breadth/Iength ratio is $34-57$ (55); the rostral index is $\cdot 41 \cdot 43$ (.42), and the facial index 223-241 (232).

The rostrom is conical and steeply tapering, but shallower. The proportions of the nasal bones are much the same, but the expanded portion is more extemsive and its posterior margins bowed hackwards and gendy rounded at the vurners, and commonly just reach or slightly exceed the interorbital line. The zygomatic arches slightly wider anteriorly, their maxima at or anterior to the midpoint. Interorbital space relatively still wider, remaining quite parallel sided in the oldest skulls available, its concavity rather greater and its edges smooth and rounded. Temporal crests very weakly developed; the interparietal persistent and constant, sharply triangular not semilntiar nor crescentic.

In lateral aspect the premaxillie usually make a smaller contribution to the wall of the orbit than in B.p. ogilbyi, but with wide variation in the extent of the premaxilliary and maxilliary suture with the nasals. The orbital plate of the lachrymal is very large and the maxilliary process below it, correspondingly reduced, sometimes to a mere splint and in three cases to extinction. In these latter skulls the lachrymal articulates directly with the palatine as in Potorous and Onychogote and many polyprotodouts. This feature is a good distinction of B. cuniculus from B. lesueuri and B. penicillatn, in which as in most Macropodidae the orbital process of the maxilla is a substantial squarish element frequently more than half the area of the lachrymal and sealing off the latter from
contact with the palatine. The zygomata are weak and shallow as in B.p. ogilbyi. The supratympanic canal is not completed by bone, though the process of the squamosal which is chiefly responsible for the closure in B. lesteum is strongly developed. The squamosal frontal contact on the temporal wall is constant.

The structures of the palate are generally similar, such propurtional differences as occur being caused chiefly by the different character of the secator P^{4} ansl the greater parallelism of the molar rows. The anterior palatal foramina are looth absolutely and relatively larger, and the breadth of palate at M^{2} also - the latter averaging 20 per cent. of the basal length. The diastema and the posterior vacuities are relatively shorter, the latter reaching to about the middle of the anterior lobe of M^{*}; they are equally broad and are almost entirely invested by the palatine, a small portion of the anterior margin only, sometimos formed by the maxillae; paired satellite vacuitics are sometimes developed in the maxiliae. The bulla is much siraller, its length averaging about 10 per cent. aral its hreadth 26 per cent. less than in the smaller B, penicillata skull and its volume is probably less than one-half; as in that species, however, when aged, a thin hatmella descending from the ectopterygoid margin of the alisphensid may reach the anterointornal wall of the bulla, roofing over the foramen ovale and its attendent groove to form at closed canal.

The occipital plane is much as in B. penicillata, the paraoccipitals and the mastoid process also, but sather stouter and the latter are not always closely contoured to the bulla,

Mandible, comparatively slight, the maximum breadth, breadth of ascending process and depth of ramus helow M_{2} and breadth of condyle all relatively lowet; masseteric kassa and furanion with a similar range of development, but the process of the angle is shorter and more obtuse.

DIMENSIONS

The following figures give the range and approximate mean of the dimensions in a bisemal series of 9 skulls of adults at the $P^{\prime} \mathrm{M}^{\prime}$ stage: Greatest length. $79 \cdot 7 \cdot 84 \cdot 1$ ($82 \cdot 2$); basal length, $68 \cdot 6-72 \cdot 9(71 \cdot 2)$; zygomatic breadth, $44 \cdot 0-46 \cdot 6$ ($45 \cdot 4$) , nasals length, $33 \cdot 6-36.8$ (34.8) , nasals greatest breadth, 13.6-16-0 (14-3), nasals least breadth, $7 \cdot 0-8 \cdot 3(7 \cdot 8)$; rostrum depth, $15 \cdot 0-16 \cdot 0$ ($15 \cdot 3$); interorbital constriction, $19 \cdot 0-21-0(19 \cdot 6)$ palate length, $45 \cdot 6-48 \cdot 0$ (46.7): palate breadth inside $\mathrm{M}^{2}, 14,0-15,2(14.5)$; anterior palatal formmina, 3.4-4.9 $(4-3)$, diastema, $12 \cdot 5-14 \cdot 2(13 \cdot 4)$; bulla length, $12 \cdot 9-13 \cdot 4(13 \cdot 1)$; bulla lreadth, $6-7-8.0(7-3)$; basicranial axis, 20.822 .2 ($21-4$); basifacial axis, $48.451 .7(50-4)$ facial index, $223-241$ (232); mandible maximum breadth, 34 1-11.4 (40.4); depth of rarnus below $\mathrm{M}_{2}, 8 \cdot 5-9 \cdot 6(9 \cdot 0)$; breadth of ascending process. 12.4-1.3.4 (12.9).

SKELETAL CIIARACTERS

The following data is derived from the complete prepared skeleton of the young adult male, the ficsh meisurements of which are given above: Vertebrac; cervieals, 7 ; thoracic, 13; lumbar, 7; sactal, 2; caudal, 22. Scapula lengths 44 ; do maximum meadth, 21; claviole length, 25-5; humerus length, 39; do. distal breadth. 13.7; xadius length, $45 \cdot 5$; do. maximum breadth, $5 \cdot 5$; alna length, $55 \cdot 5$; do. maximum breadth (coronoid), $8 \cdot 0$; Femur length, $93 \cdot 7$; do. proximal (trochanteric) breadth, 19•5; do. distal (condylar) breadth, $18 \cdot 0$; tibia longth, 115; do. proximal breadth (mediul aspect). $19 \cdot 5$; fibula length, 112 ; do. greatest breadth (proximal), 7.9, pelvis maximun kesgeth, 88; do, iliac breadth, 151-0; do.
acetabular breadd $52 \cdot 6$; Ho, isohbal breadth, $50-5$; cpipubic maximum length, 12.5; do, atticular breadth, 7.7 .

DENTITION

The semblances of the dentition (Pl. 1, Fig. F-I) are divaded, the incisors favouring B. penicillata, the premolars B, lestuents with sume degree of intermediacy, and the molars combining the crown features of the former, with metrical chatacters quite different from both: the mean variation in linear dimensioms of post-diastemal teeth is 12 per cent.

The incisor rows meet at a somewhat wider angle than in B, penicillata. I^{\prime} is a relatively small tooth, its dimensions about as in B.p. ogilbyi and decidedly smaller than in B. lesueuri. Tate (1948) implies that this tooth is longer in cuniculus, though he does not quote dimensions for it, but I cannot sthstantiate this in the present material. It is comparatively upright and the medial surfaces are separated by a wider interval than usual and in anterior aspect have an outward (lateral) curvature culminating in eversion of the tips (Pl. 1, Fig. F) : darsoventral height $4 \cdot 7 \cdot 6 \cdot 6$ ($5 \cdot 8$); antero-posterior breadth, $2-5.3 \cdot 6(3.0)$. I^{2} is larger than in penicillata but has mued the same proportions; it is much narruwer transversely and less rugged than in lesueuri. The height of its erown is mach reduced in aged skulls, a condition which may exaggerate the apparent height of 1 , intero posterior length, $3 \cdot 0-3 \cdot 2(3 \cdot 0)$; transverse breadth, $1.8 \cdot 2 \cdot 0(1.6)$.

I' 3, as represented by the scrics means, is somewhat shorter dorso-ventrally and longer antero-posteriorly that in either of the above species, but changes in shape of this footh ire so rapid that without more age phases than are available it is difficult to decide whether this is characteristic of the species or simply of the phase measured. Its general rescmblance to that of B.p. ogillyy is close, and in particular there is no inturning of the crest as in B. lesweuri and sepyprymnus; dorsn-ventral height, 2•5-3.6 (3-1); antero-posteriar length, 2-5-3.6 (3.0). I_{1} is a larger touth than in penicllata hut similarly proportioned; andrower than in B. lesuetri; antero posterior length. 12-8-14-0 (13-3) and lireadth, $3 \cdot 2-3 \cdot 6(3-3)$.

The canine is smaller than in B.p. oxilbyi and about equal to that in the lower South Australian B. lesucuri, its alveolus lies on the maxillo-premaxillary suture which. as Tate has shown, often approaches it obliquely from betrind rather than above; dorso-ventral height, 3-3-1-4 (3-8).

Both the 3rd (and more esperially) the th premolars are much longer teeth than in B.p. ogilbyi and in this approximate to the standards of B. lesueuri. Their alignment in the tooth rows is momal, the axis in the upper teeth being nearly parallel to the midline of the palate. The profile of the crests is straight or noarly so, though in P^{\prime} when quite onworn, it may show a slight nosterion cuneavily and although the wall is highex anteriorly than posteriorly, the disproportion is much less than in B. pericillata. Hysodontism as gauged by the ratio of greatest beight (ol enamel) to length is intermediate but much nearer to B. lesueuri.
$P^{3 *}$ arrower and less bulky than in the other species, its maximum breadth pusterior tor midpoint and with it emsidiction at ithout its anterior th, and its eatline as seen from above more clongate and less regularly oval; grooves 5. P_{5} is very similar, the length as compared with its opponent, reduced by about 6 per cent. and the breadh and height by abont 5 per cent.; grooves 5 . The dimensions of single example of P^{3} and P_{y} are respectively: length, 5•1, 4-3: breadth, $2 \cdot 5,24$; height (of enamel wall), 35, 3.3,

Pt, the secator, is also a narrower tooth than in either B.p. ogilbyt or Iostecuri, but is much longer than in the former, its length overlapping that of the

Contral Australisan population of B. lesueuri which it resembles in general rather closely; its postero-internal talon and ledge are equally variable and may be virtually absent, but the maximum development of these features is less, and it differs in the deeper hollowing of the buccal face below the cingulum. Though the touth as a whole is noarly parallel to the intermaxilliary suture, there is some torsion of erest, with very slight extraversion of the anterior portion, which is accentuated by wear. Distinct grooves 6 in 70 per cent., 7 in 30 per cent. of examples, hut additional vestiges are sumotimes present as in all the species. P_{4} is similar in its general characters to the upper tooth; its length is reduced by 11 per cent, but its breadth and height are both slightly increased; the overatl size reduction is therefore less than in the other twn species; a posterior talon and ledge are not developed. Grooves 6 in 30 per cent., 7 in 70 per cent. of cxamples; they are shorter than in the other species and have a tendency to bifurcate in their lover course and become lost in obscone crenellations of cnamel Range and approximate mean of dimensions in 10 slightly to moxderately worn examples of P^{4} and P_{t} respectively are: antero-posterion length, $7-5-8 \cdot 9(8 \cdot 2), 7 \cdot 0-7 \cdot 6(7 \cdot 3)$; breadth, $2 \cdot 7 \cdot 3 \cdot 1(2 \cdot 9), 2 \cdot 8 \cdot 3 \cdot 2(3 \cdot 0)$, height (of enamel), $2 \cdot 9 \cdot 4 \cdot 2(3 \cdot 7), 3 \cdot 6 \cdot 4 \cdot 5$ (4.0).

The milk premolars are larger than those of B, p. ogilhyi and B, lesucuri but appreciably narrower. MP is about equal in crown area to M^{4} and its trenchant antcro-extemal cusp is very strongly developed; much more so than in these two species ind almost as in Acpyprymnus. MP A_{4} much smaller, its crown nearly triangular through reduction of the antero-extornal cusp. Dimensions of a single example of MP^{1} and MP_{4} are respectively: antera posteriar lengdi, 39 , $3 \cdot 5$, breadth anterior lobe, $2 \cdot 8,2 \cdot 4$ breadth posterior lobe, $3 \cdot 3,2 \cdot 8$.

The upper molar rows are very weakly arched, with the anterjor interval Lut slightly greater than the posterior. The metrical characters of the molars of B, cuniculus are markedly distinet from those of B. penicillata and B, lesucmi; aboolate dimensions are higher in most categorios, the length of Ms 7.3 in silu, exceeding the mcans of the comhined South and Central series of B. Tesucuri by 10 per cent. and the sum of the crown areas by 30 per cent., while the superiority over B.p. osilbyi is still greater.

In relative size as interpreted by the scctional crown areas, the zod is invariably the largest molar both above and below, while in the upper jaw M^{1} is sometimes smaller than M^{3}, a condition not seen in the other species cxamined; M_{1} is invariably smaller than M_{3}. The overall antero-posterior declension in size is also mueh less than in B. penicillata or B. lesueuri, the index of reduction beine 1-5-9-1 ($1-8$) in the upper and 1-3-1-7 (1-4) in the lower teeth. The molar formulae and their approximate frequencies in the upper jaw are $\mathrm{M}^{2}>\mathrm{M}^{1}>\mathrm{M}^{3}>\mathrm{M}^{2} \quad 70$ per cent, and $\mathrm{M}^{2}>\mathrm{M}^{3}>\mathrm{M}^{1}>\mathrm{M}^{+}, 30$ per cent.; and in the lower jaw, $\mathrm{M}_{3}>\mathrm{M}_{5}>\mathrm{M}_{1}>\mathrm{M}_{4}, 100$ per cent; the range and approximate mean of the crown areas expressed is percentages of those of the first molars are: $\mathrm{M}^{\prime}(100) ; \mathrm{M}^{2} 104-123$ (111) ; $\mathrm{M}^{2} 90-107$ (97); $\mathrm{M}^{5} 52-72$ (62); and M_{1} (100): $\mathrm{M}_{2} 117-134$ (125): $\mathrm{M}_{3} 107-125$ (114); $\mathrm{M}_{1} 81-96$ (88).

In the size relations of upper and lower molars a notable feature is that M^{3} as well as M^{1} and $\mathrm{M}^{\prime \prime}$ is invariably larger than its lower opponent, M_{4} alone of the lower series exceeding the upper toots with a frequency of 86 per cent. Shape differences are also appreciable; there is a general tendency towards narrowing of the molars and breadth $>$ length occurs as a minority frequency in two molars muly $\left(\mathrm{M}^{2}, \mathrm{M}^{2}\right.$), whereas in B.p. ogilbyl and B. lesucuri this condition is represented in all molars, and is dominant in four teeth in the former species und in three of the latter. Further, the condition, posterior lobe $>$ anterior
lobe, which is dominant in both M^{1} and M_{1} of the above species, is lost in M^{2} of B. cuniculus, but persists in M_{1} with a frequency of 100 per cent.

The range and approximate mean of the antero-posterior length, breadth of anterior lobe and breadth of posterior lobe, in the molars of a bisexual series of 11 skulls, is as follows: $\mathrm{M}^{1}, 4 \cdot 2 \cdot 4 \cdot 9(4-5)$; $4 \cdot 2-4 \cdot 8(4 \cdot 5) ; 4 \cdot 0-4 \cdot 6(4 \cdot 2)$; $\mathrm{M}^{2}, 4 \cdot 6-5 \cdot 1(4 \cdot 8) ; 4 \cdot 5-5 \cdot \mathrm{I}(4 \cdot 7) ; 4 \cdot 1-4 \cdot 6(4 \cdot 3) ; \mathrm{M}^{3}, 4 \cdot 3-5 \cdot 1(4 \cdot 7) ; 4 \cdot 1 \cdot 4 \cdot 7$ $(4-3) ; 3 \cdot 6-4 \cdot 2(3 \cdot 8) ; \mathrm{M}^{+}, 3-3-4 \cdot 0(3 \cdot 8) ; 3 \cdot 0-3 \cdot 9(3 \cdot 5) ; 2 \cdot 7 \cdot 3 \cdot 0(2 \cdot 9) ; \mathrm{Ms}^{1-3}$ (in situ) $13 \cdot 4-14 \cdot 6(14 \cdot 0)$; and in the mandible: $\mathrm{M}_{3}, 4 \cdot 0-4 \cdot 5$ (4.3); $3 \cdot 4 \cdot 3 \cdot 8$ $(3 \cdot 5) ; 3 \cdot 5 \cdot 4 \cdot 0(3 \cdot 8) ; M_{2} \cdot 4 \cdot 6-5 \cdot 0(4 \cdot 8) ; 4 \cdot()-1 \cdot 6(4 \cdot 2) ; 3 \cdot 7-4 \cdot 2(4 \cdot 0) ; \mathrm{M}_{4}$, $1 \cdot 3-4 \cdot 6(4 \cdot 5) ; 4 \cdot 1-4 \cdot 4(4 \cdot 3) ; 3 \cdot 6-4 \cdot 1(3 \cdot 8) ; \mathrm{M}_{4}, 3 \cdot 8-4 \cdot 3(4 \cdot 1) ; 3 \cdot 6-3 \cdot 9 \cdot(3 \cdot 8) ;$ $3 \cdot 0-3 \cdot 3(3 \cdot 2) ; \mathrm{Ms}_{1-3}$ (in situ), 13•1-14.0 (13.5). In examples showing hoavy war on the crowns, interproximal wear between molars is also appreciable, and the value for Ms^{1-3} may fall to $12 \cdot 3$.

The molars are slightly morc brachydont than in B. penicillata and decidedly more so than in B. lesueun and the working surface occupies a larger proportion of the crown than in either. The crown pattern is relatively undeveloped as in the former, the cusps and lophs being generally low and obtuse, with the longitudinal elements reduced much bolow the \mathcal{B}. lesueuri condition; the midlinks well developed in that species and feebly in B. penicillata, are thsent. The postefior lophs on the upper 2nd and 3rd molars are scarecty developed as contiuuous transverse ridges, the buceal and lingual cusps being almost completely separated down to base level by a longitudinal median fissure. The anterior lophs of these teeth, and both anterior and posterior lophs of the lower molars nevertheloss, although lower, are often more continuous and more extended transversely than in either B.p. orilbyi and B. Tesweuri.

Accessory cuspules corresponding to those of B.p, ogilhyi are very weskly developed on the 1st and 2nd upper molars in two skulls only. In one skull, M+ in one maxilla is much smaller and simpler than in the other; in all others the posterior molars are structurally and functionally normal bilobed teeth, nppearing regularly in the succession. There are no examples of supernumary molars or incisors.

In the single example of the tooth change afforded by the series, P^{4} is erupting simultaneously with M^{*}.

REFERFNCES

Bhazenor, C. W., 1950. "Mammals of Vicema." Molbourne, p. 46.
Fintayson, H, H., 1958. Ther S. Anstr, Muserm, $\lambda 1$, po. 235-302
'Tate, G. H, FI. 1948 . Bull, Am, Mus. Nat, HiAi, 91, p-968.

EXPLANATION OF PLATE I

 Tasmania. ($x 0.9$.)
Fig. B, Palatal aspect of the sames ($x 0 \cdot 9$.)
Fig. C. Lateral aspect of the sime. (sol-9.) The pterygoid plate is not shomen.
Fig. D. Oucipital aspect of the same. $(x 0.9$.
Fig. E. Lateral aspect of right mandihular ramus of the same ($\times 1.0$)
Fig F Anterior aspect of ppper lst incisors of the same. $(\times 4 \cdot 4$)
Lig. C. Buceal aspect of an unwom Pt of the right side in another young ahblt same locality. ($x 4.7$.)
Fig. H. Buccal aspeoi of slightly worn F_{t} of the right side in amother young adult. Same locality. $(x+3-3)$
Fic. 1. The right maxillary tooth change in an atvanoed subedult from the same locality. p^{+}(upper) is simultaneously displacing $p^{p /}$ (lower right) and MP4 (lower moldeo); M (lower left) persisting in sith is represcatel by its anterior lobe. (s 4,7.)

